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Relativistic diffusion model
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Abstract. Evidence is presented that diffusion drives colliding many-particle systems at relativistic energies
from the initial δ–functions in rapidity towards the equilibrium distribution. Analytical solutions of a linear
Fokker-Planck equation represent rapidity spectra for participant protons in central heavy-ion collisions
at SPS-energies accurately. Thermal equilibrium in the interaction region is not attained, nonequilibrium
features persist and can account for the broad rapidity spectra.

PACS. 25.75-q Relativistic heavy-ion collisions – 24.60.Ky Fluctuation phenomena – 24.10.Jv Relativistic
models

Relativistic heavy-ion collisions [1] offer a unique possibil-
ity to study equilibration processes in microscopic many-
body systems. In particular, rapidity distributions for
participant protons are valuable indicators for the time-
evolution of the reactions. They can be used to investigate
the approach to thermal equilibrium in the interaction
region.

Isotropic thermal models fail to reproduce the broad,
often flat or even dipped rapidity spectra that have been
observed at AGS and SPS energies. Hence, these models
have been supplemented [2] by collective expansion and
anisotropic flow schemes, or by a superposition of isotrop-
ically decaying thermal sources (fireballs) [3] to fit the
data [4].

In this note I introduce a nonequilibrium-statistical
model based on a linear Fokker-Planck equation (FPE) [5]
to describe the gradual approach to local thermal equilib-
rium in the interaction zone. It is argued that the broad
rapidity distributions for participant protons that have
been observed may also indicate nonequilibrium proper-
ties of the system: Due to the short interaction time, ther-
mal equilibrium in the interaction region is not reached
even in case of central collisions of heavy systems such as
Pb+Pb.

The approach is macroscopic: It is concerned with the
time-evolution of rapidity distribution functions for par-
ticipant protons towards statistical equilibrium. This re-
laxation process occurs as a consequence of random colli-
sions and creation of secondaries (about 2100 pions in a
central Pb+Pb-collision, with an estimated 40% produced
directly). The nonequilibrium rapidity spectrum for pro-
tons emerges analytically from the model. A similar ap-
proach has previously been used to evaluate and predict
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transverse energy distributions (integrated over all parti-
cle species) analytically [6]. The present model allows, in
particular, to interpret flat or even double-peaked proton
rapidity spectra that have been observed in heavy rela-
tivistic systems [7–10] as being due to incomplete ther-
malization.

In the relativistic diffusion model for rapidity spectra
of participants, the initial projectile rapidity

y1 =
1
2

ln
(
EL + PL
EL − PL

)
(1)

with laboratory energy EL and momentum PL, as well as
the initial target rapidity y2 (= 0 for fixed-target exper-
iments) relaxes towards the equilibrium value yeq given
by the center-of-mass rapidity due to collisions, particle
creations and decays.

The discussion is restricted to participant protons
which (as compared to produced particles) exhibit the
nonequilibrium properties most clearly. Transforming to

Y =
2y
y1
− 1 (2)

such that Y = 1 for y = y1, and Y = -1 for y = 0, the
initial conditions of the time-dependent rapidity distri-
bution functions for projectile (target) participants are
R1,2(Y, 0) = δ(Y ∓1). Here I neglect a small initial broad-
ening Y ≈ 0.07 which is due to the Fermi momentum.

A partial differential equation for the distribution func-
tion R (Y,t) of the macroscopic variable Y should account
for both the shift of the mean value 〈Y 〉 towards equi-
librium Yeq and the corresponding broadening in time.
The Fokker-Planck equation successfully describes similar
nonequilibrium processes in many areas of physics [5] –
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starting with the theory of Brownian motion, where it has
been used to model both the velocity- and the coordinate
distribution. The use of the FPE is strictly valid only near
thermal equilibrium. However, the collisions investigated
here are central reactions with relatively long interaction
times; they correspond to few percent of the cross section.
Although the analysis will show that thermal equilibrium
is apparently not reached in these collisions, one comes
sufficiently close to it to justify use of the FPE. In rel-
ativistic systems, however, Lorentz-invariant kinematical
variables have to be introduced. In particular, the rapid-
ity replaces the velocity to describe the motion parallel
to the beam direction, and the FPE for the probability
distribution of the rapidity becomes

∂R(Y, t)
∂t

=
1
τY

∂

∂Y

[
(Y − Yeq)R(Y, t)

]
+DY

∂2

∂Y 2
R(Y, t). (3)

Two transport coefficients determine the time evolution of
the rapidity distribution, the relaxation time τY and the
rapidity diffusion coefficient DY . Rapidity spectra calcu-
lated from (3) will ultimately depend on two dimensionless
parameters: τint/τY with the interaction time τint (the fi-
nal time in the solution of (3)), and

√
DY τY . The first

parameter describes how close to equilibrium the system
is, and the second parameter determines the width of the
rapidity distribution at equilibrium. Both may be fitted
from experimental rapidity distributions.

In this work, the interaction time will be taken from
other sources [6]. The relaxation time τY and hence, the
ratio of these two times will be fitted to data. The ra-
pidity relaxation time is related to the diffusion coef-
ficient through the temperature of the thermal equilib-
rium distribution that is obtained from other origins such
as hadron abundancies. The corresponding dissipation-
fluctuation theorem may, however, be violated in relativis-
tic collisions where a large amount of energy resides in
the interaction. Hence, I will consider the transport coef-
ficients as independent parameters when comparing with
data.

The relaxation time determines the speed of the ap-
proach to the Gaussian stationary solution given by
∂Req/∂t = 0, with the corresponding equation for the
mean value

d

dt
〈Y (t)〉 =

−1
τY

[〈Y (t)〉 − Yeq]. (4)

Here, τY may be considered as a macroscopic quantity and
– based on a suitable parametrization – determined in a
fit to available data, or derived in a microscopic model.
In this work I treat it on the macroscopic level. Hence,
the model is positioned between the available microscopic
models of BUU-type on the one hand, and macroscopic
thermal models on the other hand. It maintains advan-
tages of thermal models such as transparency, analytical
treatment, and few intuitive parameters, but simultane-
ously goes beyond the thermalization assumption and al-
lows to investigate nonequilibrium effects.

The diffusion coefficient DY is responsible for the as-
sociated broadening of the distribution functions due to
collisions, particle creations and decays. For a linear FPE,
the fluctuations are usually determined without detailed
consideration of the microscopic structure of the system,
because the stationary solution Req of the FPE should
agree with the isotropic thermal equilibrium distribution
Rth. The latter depends on a temperature Tp that is to
be identified with the freeze-out temperature, and on the
particle mass mp. In the Boltzmann approximation, this
thermal distribution is expressed as [2]

Rth(ycm) = cTpm
2
pTp

[
1 + 2χT (ycm) + 2χT (ycm)2

]
× exp

( −1
χT (ycm)

)
(5)

with the center-of-mass rapidity ycm = y1Y/2, and

χT (y) =
Tp

mp cosh(y)
. (6)

The freezeout-temperature Tp can be approximately de-
termined from Boltzmann fits to transverse mass spectra
or hadron yields [2],[4], [7–10]. The constant cTp ensures
that the distribution function in Y-space is normalized to
1 for each temperature Tp.

In thermal models of relativistic collisions [2], it is as-
sumed that the system attains the thermal equilibrium
distribution (5) and subsequently expands collectively.
On the basis of the present nonequilibrium-statistical ap-
proach, however, it appears that due to the short interac-
tion time, the system does not reach the equilibrium distri-
bution at SPS-energies, such that broad rapidity spectra
could occur due to nonequilibrium properties. A possi-
ble collective expansion which might occur on top of this
would require a separate treatment, it cannot be described
within the FPE-framework alone.

The shape of the thermal distributionRth(Y ) is not ex-
actly Gaussian, although very close to it. Hence, it cannot
be equated directly with the stationary solution Req(Y ) of
the FPE as in usual nonequilibrium-statistical approaches.
Instead, a Gaussian approximation to the thermal distri-
bution is used to equate it with the stationary solution of
the FPE. I obtain the rapidity diffusion coefficient as

Dth
Y =

1
2πτY

[
cTpm

2
pTp

(
1 + 2

Tp
mp

+ 2
(
Tp
mp

)2
)]−2

× exp
(

2mp

Tp

)
. (7)

With this choice of the diffusion coefficient, thermal and
stationary distribution become almost identical. For a
given equilibrium distribution, the rapidity diffusion co-
efficient is then solely determined by the dissipative con-
stant τY . This equation is reminiscent of the well-known
Einstein relation between diffusion and friction coeffi-
cient in the analysis of Brownian motion [11]. Due to
the temperature-dependence of the normalization con-
stant cTp , it displays the expected behavior, namely, the
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diffusion coefficient at fixed incident rapidity y1 rises al-
most linearly with increasing temperature of the corre-
sponding equilibrium distribution.

In relativistic collisions, however, the above dissipa-
tion-fluctuation theorem need not be fulfilled because a
large amount of energy resides in the interaction, and is
used for the generation of secondary particles. Hence, in
a comparison with data, values of the rapidity diffusion
coefficient exceeding the ones obtained from (7) may be
expected, and are indeed found at SPS-energies. Conse-
quently, I treat the rapidity relaxation times and the dif-
fusion coefficients as independent parameters at these en-
ergies.

For participant protons, δ-function initial conditions
lead to superposed Gaussian solutions of the FPE with
mean values

〈Y1,2(t)〉 = Yeq

(
1− exp

(
− t

τY

))
± exp

(−t
τY

)
(8)

and variances (for each of the projectile- and target-like
distributions)

σY (t)2 = DY τY

(
1− exp

(−2t
τY

))
. (9)

For small times, two separate Gaussians develop near
target and projectile rapidity. They shift towards the
equilibrium value and simultaneously broaden with in-
creasing time due to collisions and particle creations. For
t/τY ≥ 0.2 at SPS-energies, the superposed distribution
that differs from a Gaussian develops. For t/τY ≥ 1.1−1.5
(depending on the asymmetry and size of the systems)
the superposed distribution acquires a Gaussian shape,
and its width shrinks until the stationary distribution
(Γeq =

√
8 ln 2

√
DY τY ) is reached for t → ∞. Due to the

finite values of the interaction times (incomplete stopping),
actual rapidity distribution functions remain significantly
broader than the stationary distribution and differ from
Gaussians.

Values of the interaction times t = τint(b) that are –
together with the corresponding energy relaxation time τ
– in accordance with measured transverse energy distri-
butions may be taken from [6]. Model-dependent HBT-
analyses of effective source lifetimes and also microscopic
calculations yield smaller values [1] which are closer to
the transit time [6]. However, since diffusion-model pre-
dictions depend on τint/τ for the energy relaxation [6],
and on τint/τY for the rapidity relaxation of participants,
the use of smaller values for the interaction times will sim-
ply lead to a rescaling of the relaxation times and diffusion
coefficients, whereas the dimensionless parameters τint/τY
and
√
DY τY (and hence, the physical conclusions) will not

be changed.
Figure 1 shows distributions R (Y,t) weighted with the

respective numbers of projectile and target proton partic-
ipants Np1,2(b = 0) at several selected values of t/τY for
the asymmetric S + Au system at SPS energies. Both the
asymmetric relaxation in rapidity space and the approach
to the stationary distribution at large times are clearly

Fig. 1. Rapidity relaxation of participant protons in 200 A
GeV/c S + Au. Selected analytical solutions of the Fokker-
Planck equation for various values of time t/τY weighted with
the respective numbers of projectile and target participants for
central collisions illustrate the asymmetric equilibration. The
dashed curve is the Gaussian stationary distribution (centered
at yeq = 2.63, Yeq = −0.13). For comparison with NA35 data
cf. Fig. 3

displayed. For a symmetric system such as Pb + Pb (Fig.
2), the relaxation is, of course, completely symmetric in
Y.

To compute actual rapidity density distributions for
participant protons in the relativistic diffusion model, one
needs to knowNp1,2(b) at impact parameter b, the impact-
paramter dependent interaction times t = τint(b), and the
cross-section to perform the integral over b. The impact-
parameter dependent rapidity spectrum (that may be in-
tegrated over b) is obtained as

dn

dy
|b =

2
y1

dN

dY
|b

=
2
y1

[
Np1(b)R1(Y, t = τint(b))

+Np2(b)R2(Y, t = τint(b))
]
. (10)

For central collisions with small cross sections (typ-
ically 5% of the total cross section at SPS-energies), it
is sufficient to evaluate this expressions at b=0 since the
spectra do not depend much on the precise magnitude of
the cross section.

In order to illustrate the rapidity relaxation for protons
at SPS-energies, I have investigated the systems S+Au,
S+S and Pb+Pb where data are now available [7–10]. For
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Fig. 2. Rapidity relaxation of participant protons in 158 A
GeV/c Pb + Pb. Selected analytical solutions for various values
of time t/τY as in Fig. 1 are shown. The stationary distribution
(dashed) is centered at midrapidity (yeq = 2.91, Yeq = 0). For
comparison with NA49 central collision data cf. Fig. 3

symmetric systems the net proton yield (p−p) can be de-
termined fairly accurately from the charge excess distribu-
tion. Protons from the decay of hyperons are not included
in this comparison with the diffusion model. (Similar to ra-
pidity distributions of produced mesons, these secondary
particles are peaked at mid-rapidity.) Hence, the integrals
of the rapidity spectra tend to be smaller than the number
of proton participants for central collisions.

Rapidity density distributions for protons in the asym-
metric S+Au system at SPS-momentum of 200 A GeV
[8,9] are compared with the diffusion-model results in the
upper part of Fig. 3. The diffusion coefficient that fits the
data (Table 1) is a factor of 12 larger than the value cal-
culated from the fluctuation-dissipation theorem (7). In
all the systems investigated at SPS-energies, such a large
diffusion coefficient is impossible to achieve through real-
istic variations of the temperature and hence, the Einstein
relations are clearly violated. Further work tends to show,
however, that the theorem (7) is fulfilled at lower (SIS-)
energies [16]. The origin of the violation at higher energies
will need further investigation. It may certainly also mask
collective expansion.

For S+Au, the model reflects the asymmetry that is
present in the data. The experimental difficulties to sep-
arate participants from spectators in asymmetric systems
[8] may cause part of the deviation of the midrapidity-
datapoint. Equilibrium models fail to generate such asym-
metric distributions.

Fig. 3. Calculated rapidity density spectra of participant pro-
tons in central S+Au, S+S and Pb+Pb- collisions at SPS- ener-
gies in comparison with NA 35 [7,8] and NA 49 [10] data ( black
squares; data for symmetric systems reflected at yeq = y1/2).
The projectile rapidities are y1 = 6.06 for S, and y1 = 5.83 for
Pb. For Pb+Pb the thermal equilibrium distribution (T=160
MeV) is also shown; its maximum is at dn/dy = 165 (dashed).
The data are incompatible with thermal distributions. The
time-of- flight data point (diamond) includes secondary pro-
tons from hyperon decays, the other (preliminary) data points
do not. The integrals of the respective theoretical distributions
correspond to 45, 25 (renormalized) and 164 protons. As a
consequence of incomplete y-relaxation at SPS- energies, the
spectra are significantly broader than the equilibrium distribu-
tions, and their shapes differ from Gaussians. This emphasizes
the non-equilibrium nature of relativistic collisions
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Table 1. Relaxation times τY and rapidity diffusion coefficients DY for systems at SPS-energies. The dimensionless parameter
τint/τY determines how close to equilibrium the system is, whereas

√
DY τY gives the standard deviation of the rapidity

distribution at equilibrium

System pL y1 τY DY τint/τY
√
DY τY

(GeV) (fm) (10−4fm−1)

S + Au 200 6.06 72 26 0.84 0.374
S + S 200 6.06 25 89 0.60 0.451
Pb + Pb 157.7 5.83 134 12 0.81 0.408

Using the transport coefficients (or dimensionless pa-
rameters) of Table 1, the broad double-peaked proton ra-
pidity spectrum shown in the middle part of Fig. 3 for
S+S is in reasonable agreement with the experimental
results [7,8]. In particular, the positions of the maxima
of the experimental distributions are precisely reproduced
for τint/τY = 0.6. The occurence of these maxima indi-
cates that the process is far from equilibrium: An equilib-
rium distribution has no dip at central rapidity. Impact-
parameter integration will sligthly smooth out the distri-
bution. Thermal descriptions (without or with flow) can-
not reproduce the data. Again, the Einstein relations are
violated by a factor of about 12 because a large amount
of energy resides in the interaction and is used for particle
production.

For Pb+Pb at SPS-momentum of 158 GeV per par-
ticle the situation is similar. The net proton (p − p) pre-
liminary data points that have been determined from the
charge excess distribution of hadrons [10] are in agree-
ment with the diffusion-model result for τint/τY = 0.81,
and a diffusion coefficient that exceeds the one calculated
from the dissipation-fluctuation theorem by a factor of
9. The time-of-flight datapoint (diamond) includes sec-
ondary protons from hyperon decays, which are not con-
tained in the model. Refined data analysis of the net pro-
ton distribution indicates [9] that the dip may turn into a
flat distribution. This would require τint/τY ≥ 0.9 in the
relativistic diffusion model, cf. Fig. 2.

The thermal distribution for T = 160 MeV is also
shown, dashed curve. It clearly disagrees with the data.
The temperatures of the thermal distributions are taken to
be consistent with previous analyses of transverse momen-
tum distributions and hadron yields [4], [8], [12]. For sym-
metric systems and diffusion coefficients from (6), these
distributions coincide with the stationary solutions of the
FPE.

The transport coefficients that determine the rapidity
spectra are given in Table 1. The dependence of the ra-
pidity relaxation time τY on size and asymmetry of the
participant systems as well as on the available energies is
in reasonable agreement with the corresponding expres-
sion for the energy relaxation time τ that was found in
[6] and hence, this can be used for predictions. For the
systems investigated here, the rapidity relaxation times
are larger than the interaction times for central collisions,
which emphasizes the nonequilibrium behaviour. The ra-
tio to the energy relaxation time is τY /τ ≈ 1.3, indicating

that the rapidity relaxation of participants is slower than
the buildup of transverse energy. The rapidity diffusion co-
efficient is about 7 times larger for the small S+S system
than for Pb + Pb, essentially because of its inverse propor-
tionality to the relaxation time. The transport coefficients
given here properly describe the broad nonequilibrium ra-
pidity spectra for participant protons. Note, however, that
the broad experimental distributions may also have other
additional sources such as collective expansion which is
not accounted for in the diffusion approach.

Lighter produced particles such as pions and kaons
have fairly wide thermal distributions in rapidity due to
their small masses. They are expected to be less sensitive
to the nonthermal behaviour that the relativistic diffusion
model describes. It will, however, tend to broaden their ra-
pidity spectra and has to be considered in precise analyses
of the data.

Considering proton rapidity spectra at the lower AGS-
momenta of 11–15 A GeV [12,13], the mean interaction
times are larger [6] and hence, one may expect to come
closer to thermal equilibrium. Still, the relatively small
Si+Al system exhibits in central collisions a doubled-
peaked proton rapidity distribution [13], and for Au+Au
it is flat [12]. Both are significantly broader than isotropic
thermal distributions, which has been considered as evi-
dence for thermalization plus longitudinal flow [2]. It is
expected that the relativistic diffusion model offers an
alternative interpretation based on the assessment that
thermal equilibrium is not reached for participant protons
in the interaction region. Again, lighter produced parti-
cles will be less sensitive to the nonthermal behaviour,
although it tends to broaden their rapidity spectra - an
effect that is masked by present flow-analyses.

At even lower SIS-energies of 1–2 A GeV, the light
Ni+Ni system exhibits proton and deuteron rapidity spec-
tra that are wider than expected for an isotropically emit-
ting thermal source, whereas pion distributions appear to
be thermal [14]. Nonequilibrium properties are likely to
cause the discrepancy.

Comparing with equilibration processes in heavy-ion
collisions at non-relativistic energies [15], the present in-
vestigation underlines the unexpected result that relax-
ation phenomena in small quantum systems persist over
a range in incident energy from about 5 MeV per parti-
cle well into the ultra-relativistic region, bridging energies
that differ by more than four orders of magnitude.
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